a2 United States Patent

Fang et al.

US009251056B2

US 9,251,056 B2
Feb. 2, 2016

(10) Patent No.:
(45) Date of Patent:

(54) BUCKET-BASED WEAR LEVELING

METHOD AND APPARATUS
(71) Applicants:Po-Chao Fang, Hsinchu (TW);
Cheng-Yuan Wang, Taipei (TW);
Hsiang-Pang Li, Zhubei (TW);
Chi-Hao Chen, Kaohsiung (TW);
Pi-Cheng Hsiu, Kaohsiung (TW);
Tei-Wei Kuo, New Taipei (TW)
(72) Inventors: Po-Chao Fang, Hsinchu (TW);
Cheng-Yuan Wang, Taipei (TW);
Hsiang-Pang Li, Zhubei (TW);
Chi-Hao Chen, Kaohsiung (TW);
Pi-Cheng Hsiu, Kaohsiung (TW);
Tei-Wei Kuo, New Taipei (TW)
(73) Assignee: Macronix International Co., Ltd.,
Hsinchu (TW)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 139 days.
(21) Appl. No.: 13/646,426
(22) Filed: Oct. 5, 2012
(65) Prior Publication Data
US 2013/0326148 Al Dec. 5,2013
Related U.S. Application Data
(60) Provisional application No. 61/654,301, filed on Jun.
1,2012.
(51) Imt.ClL
GO6F 12/12 (2006.01)
GO6F 12/02 (2006.01)
GO6F 12/10 (2006.01)
(52) US.CL
CPC GO6F 12/0246 (2013.01); GO6F 12/1009
(2013.01); GO6F 2212/7211 (2013.01)
(58) Field of Classification Search

CPC GOGF 11/1451; GOG6F 11/2064; GOGF

User Processes
(App1 | [_App2]

11/2082; GO6F 12/00; GOG6F 12/12; GOGF
12/08; GOGF 12/122; GOGF 12/02; GO6F
12/10; GOGF 12/0238; GOGF 17/30215;
GOG6F 17/30578; GOGF 2201/84

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

6,000,006 A * 12/1999 Bruceetal. 711/103
2007/0208904 Al* 9/2007 Hsichetal. 711/103
2008/0183947 Al* 7/2008 Shoneetal. 711/103
2008/0301256 Al* 12/2008 McWilliams et al. 709/214
2010/0023675 Al* 1/2010 Chenetal.coo...... 711/103

(Continued)
OTHER PUBLICATIONS

Zhou P. et al., “A durable and Energy Efficient Main Memory Using
Phase Change Memory Technology,” Proc. 36th Annual Int’l Symp.
on Computer Architecture (ISCA *09), Jun. 2009, Austin, TX, pp.
14-23.

(Continued)

Primary Examiner — Jared Rutz

Assistant Examiner — Jean Edouard

(74) Attorney, Agent, or Firm — Yiding Wu; Haynes Beffel
& Wolfeld LLP

(57) ABSTRACT

A method for memory management is provided for a memory
including a plurality of pages. The method comprises assign-
ing in-use pages to in-use buckets according to use counts.
The in-use buckets include a low in-use bucket for a lowest
range of use counts, and a high in-use bucket for a highest
range of use counts. The method comprises assigning free
pages to free buckets according to use counts. The free buck-
ets include a low free bucket for a lowest range of use counts,
and a high free bucket for a highest range of use counts. The
method maintains use counts for in-use pages. On a triggering
event for a current in-use page, the method determines
whether the use count of the current in-use page exceeds a hot
swap threshold, and if so moves data in the current in-use
page to a lead page in the low free bucket.

20 Claims, 8 Drawing Sheets

.................. 100
Program 2] Memory L o4
Execution / 12 Allocation "]

~ — /—120
0S8 | os-Level Lifetime
Pagin Aware
ging) Management |
Ir—132 f—134lf—136 0
MMU Address TLB Use Count 4
Translation Unit Cache
~eIL e |
MEMORY (— -]
[Page Table] [Counters]

US 9,251,056 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2010/0088461 Al* 4/2010 Yangetal. 711/103
2010/0174845 Al* 7/2010 Gorobets et al. ... 711/103
2010/0332725 Al* 12/2010 Postetal. 711/103
2011/0055458 Al* 3/2011 Kuehne 711/103
2011/0238892 Al* 9/2011 Tsaietal. ... 711/103
2012/0173797 Al1* 7/2012 Shen 711/103
2012/0284587 Al* 11/2012 Yuetal. .. T14/773
2012/0317345 Al* 12/2012 Panetal. 711/103
2013/0145085 Al* 6/2013 Yuetal. 711/103
2013/0311707 Al* 11/2013 Kawamuraetal. ... 711/103

OTHER PUBLICATIONS

Qureshi M.K. et al., “Scalable High Performance Main Memory
System Using Phase-Change Memory Technology,” Proc. 36th
Annual Int’l Symp. on Computer Architecture (ISCA *09), Jun. 2009,
Austin, TX, pp. 24-33.

Condit J. et al., “Better I/O Through Byte-Addressable, persistent
Memory,” Proc. of the ACM SIGOPS 22nd Symp. on Operating
Systems Principles (SOSP *09) Oct. 2009, Big Sky, Montata, 14pp.
Smullen C.W. et al., “Accelerating Enterprise Sollid-State Disks with
Non-Volatile Merge Caching,” Proc. Int’l Conf. on Green Computing
(GREENCOMP ’10) Chicago, IL, Aug. 2010, pp. 203-214.
Qureshi M.K. et al. “Improving Read Performance of Phase Change
Memories via Write Cancellation and Write Pausing,” IEEE 16th
Int’l Symp. High Performance Computer Architecture (HPCA),
Bangalore, Jan. 2010, pp. 1-11.

Lee B.C. et al., Architecting Phase Change Memory as a Scalable
DRAM Alternative, Proc. 36th Annual Int’l Symp. on Computer
Architecture (ISCA ’09), Austin, TX, Jun. 2009, pp. 2-13.
Schechter S. et al., “Use ECP, not ECC, for Hard Failures in Resistive
Memories,” Proc. 37th Annual Int’l Symp. on Computer Architecture
(ISCA ’10) Saint-Malo, France, Jun. 2010, 12 pp.

Qureshi M K. et al., “Enhancing Lifetime and Security of PCM-
Based Main Memory with Start-Gap Wear Leveling,” Proc. 42nd
Annual IEEE/ACM Int’1 Symp. on Microarchitecture (MICRO *09)
New York, NY, Dec. 2009, pp. 14-23.

Ferreira A.P. et al., “Increasing PCM Main Memory Lifetime,” Proc.
of'the Conference on Design, Automation and Test in Europe (DATE
’10) Dresden, Mar. 2010, pp. 914-919.

Chen C-H et al., “Age-Based PCM Wear Leveling with Nearly Zero
Search Cost,” 49th ACM/EDAC/IEEE Design Automation Confer-
ence (DAC), San Francisco, Jun. 2012, pp. 453-458.

Zhang W. et al., “Exploring Phase Change Memory and 3D Die-
Stacking for Power/Thermal Friendly, Fast and Durable Memory
Architectures,” Proc. of the IEEE PACT, pp. 101-112, 2009.

Yoon D.H. et al. “FREE-p: Protecting Non-volatile Memory against
both Hard and Soft Errors,” Proc. of the IEEE HPCA, pp. 466-477,
2011.

Seong N.H. et al., “Security Refresh: Prevent Malicious Wear-Out
and Increase Durability for Phase-Change Memory with Dynami-
cally Randomized Address Mapping,” Proc. of the IEEE/ACM ISCA,
pp. 383-394, 2010.

Qureshi M. et al., “Practical and Secure PCM Systems by Online
Detection of Malicious Write Streams,” Proc. of the IEEE HPCA, pp.
478-489, 2011.

Jiang L. et al., “Cooperative Integration of Wear-Leveling and Sal-
vaging for PCM Main Memory,” Proc. of the IEEE/IFIP DSN, pp.
221-232,2011.

Hu J. et al., “Reducing Write Activities on Non-volatile Memories in
Embedded CMPs via Data Migration and Recomputation,” Proc. of
the IEEE/ACM DAC, pp. 350-355, 2010.

Gal E. et al., “Algorithms and Data Structures for Flash Memories,”
ACM Computing Surveys, 37(2):138-163, 2005.

Ferreira A P. et al., “Using PCM in Next-generation Embedded Space
Applications,” Proc. of the IEEE RTAS, pp. 153-162, 2010.

Cho S. et al., “Flip-N-Write: A Simple Deterministic Technique to
Improve PRAM Write Performance, Energy and Endurance,” Proc.
of the IEEE/ACM Micro, pp. 347-357, 2009.

ChangY.-H. et al., “Endurance Enhancement of Flash-Memory Stor-
age Systems: An Efficient Static Wear Leveling Design,” Proc. of the
IEEE/ACM DAC, pp. 212-217, 2007.

Chang L.-P. et al.,, “An Adaptive Striping Architecture for Flash
Memory Storage Systems of Embedded Systems,” Proc. of the IEEE
RTAS, pp. 187-196, 2002.

* cited by examiner

US 9,251,056 B2

Sheet 1 of 8

Feb. 2, 2016

U.S. Patent

["DId
$Ja3uno a|qe a8ed H
ﬁ > H H H AYOWNTIN
ovl / 7
ppL—/ A
ayoe) oﬁm._huo UN uone|suel]
JunNoj 8sn SSUPPY
omrl\\ 7 ; . NININ
et _Jver /1L @ — AT
JuswasgeueN a ﬂmc_mma
wﬂﬂwu._ _“ Jyﬁ I9A-SO | ¢(
P L \
vmrl\\ uoned0||v 771 J uo11nNdax3
Alows A weJagoud
~~
oorl\ Uddy | seeeeeseeeseseese 7 ddy Tddy

$95S920.4d 195N

US 9,251,056 B2

Sheet 2 of 8

Feb. 2, 2016

U.S. Patent

ave

NN~ O

04¢

€1

¢l

L1

iqml\

S9SSaIPPY
abed |eo1b607

06¢

MONI— |©

€1

[

d¢ DId
0 0
r !
4 ot z
< ¢ <
Nmmlﬁ . <
. ¢4 11 =T 1r!¢ - ---
¢d < Z-1
l-d - L-L
S95Sa.pPY I\,
obed |eoishyqy ~ ¢V¢ s|qe abed
V< DId
> MBN -
v !
I - Z
€ € <
14 aa
ed } 11 ..
¢-d - Z-1
ld 1-L
$9SS9.PPY I\ o1qe) obed
eve

abed |eaisAud

L1

S&u\l

$9SS8IppPY
obed o160

US 9,251,056 B2

Sheet 3 of 8

Feb. 2, 2016

U.S. Patent

\Iomm ¢ ‘DI \Iorm

1517 asN-U| 15I"] @9l
> >
4 N 4 N\
~ jeong —y T = [oepng M
asn-umol €L Je € | oumol T
b e e = = _ _==——"4d4 e T _ =
1'0 ----- 1'0 M

8¢t

4] - = e ﬂ_
mmwml\

Older pages
Older pages

? 6C€

Z26¢€

US 9,251,056 B2

Sheet 4 of 8

Feb. 2, 2016

U.S. Patent

I 1939N(

asn-ul MO

— |€ 3 62€

A

Older page

US 9,251,056 B2

Sheet 5 of 8

Feb. 2, 2016

U.S. Patent

¢ DId

19%onq
80l] B 0] 86ed posll sy) ubissy

i

19¥0Nnq 99.1) mo| ul abed
3Uj UO JUNOD SN JUBWBIOU|

i

190NQq 98l MO| Ul
abed sy) 01 psAaow eiep a1epdn

i

‘sbed asn-ul ay) 9814
"1939Nq 884} MO| Ul 8bed
e 0] abed asn-ul ul e1ep 8AO\

{ploysalyy dems joy <
gbed asn-ul JO 1UNOD BS

0c¢S

SOA
¢IuaAg BunsbblL)

oLG

g

09S

0GG

ova

0es

US 9,251,056 B2

Sheet 6 of 8

Feb. 2, 2016

U.S. Patent

\I 0ce 9 ‘OI] \I oLe
IsI7 @sn-uj 1511 9944
A A
4 N\ 4 N\
elce
T g/ AT = | wwea =]
asN-u| MO “TJe _ | 904 MOT <« 3 € _
“TJ H
gqcce A4
ety | smunn
Z62¢ eeze —

%6le —" egie

Older page

US 9,251,056 B2

Sheet 7 of 8

Feb. 2, 2016

U.S. Patent

L DOld

1930Nnqg asn-ul ybiy 0] 1@30nq
9aJ] ybiy ui abed ay) ubissy

0g.
19%0nq 991 ybiy ul abed
By UO JUNOJ 3SN JudLUBIOU|
ovL
19)0Nnq 9@3J) ybiy ul abed
e 0} @bed asn-ul ul ejep aA0O
0€L

¢ Ploysauy) dems pjoo >
gbed asn-ul Jo JuUNo9 8s

0¢L

SOA

Zuang burisbbu |

OLL

US 9,251,056 B2

Sheet 8 of 8

Feb. 2, 2016

U.S. Patent

8 'Old
juswoabeuew
Buiians| Jeam
$821A9(Q INAINO SoeLBU| 108s820.d paseq 19%9Ng YjIm
9oep)U| JasN HIOMISN eled J91j01U0D) AJoWS
homw H hw;H h@;H hin
< >
3 21— v
S92IA9(] 1NdU|
aoeuBlU| SN 298] sbed |
[sunodesn |

/ 2z8
vz8 _/

woysAg Jondwon

salnjonJis ejep
pase(1o)ong

NvY NOY
h 0£8 m 2e8

wa1sAsgng Alowspy

Juswabeuew Builaas|

Jeam paseq 1exonq
Jepun Alows |y NDd (mmw

/(9¢8

wysAsgng abe.ois

O:T\

US 9,251,056 B2

1
BUCKET-BASED WEAR LEVELING
METHOD AND APPARATUS

RELATED APPLICATIONS

This application claims benefit of U.S. Provisional Patent
Application No. 61/654,301, filed 1 Jun. 2012, which appli-
cation is incorporated by reference as if fully set forth herein.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present inventi on relates to memory devices and sys-
tems including memory management.

2. Description of Related Art

Nonvolatile memory has write/erase endurance limita-
tions. Without memory management with regard to use
counts, the memory may wear out prematurely or even cause
system failure. Wear leveling for memory management is an
approach to increase endurance of nonvolatile memory.
Implementation of an effective wear leveling algorithm may
consume memory space, increase operating complexity, and
cause system overhead and latency. Therefore, it is important
to balance the trade-offs between low latency and effective
wear leveling. Write/erase endurance limitations for nonvola-
tile memory such as phase change material based memory
can be about 10°-10°, lower than those of dynamic random
access memories (DRAM) which can be more than 10'°.
Consequently, it can be more important to have effective wear
leveling algorithms for nonvolatile memory to be used in high
endurance environments like those normally limited to
DRAM.

It is desirable to provide an effective wear leveling design
that has low computational complexity and low latency, and
that can be compatible with existing virtual addressing
schemes used for memory management.

SUMMARY

A method for memory management for a memory includ-
ing a plurality of pages can provide for wear leveling of
nonvolatile memory, including phase change memory. The
method comprises assigning in-use pages to in-use buckets
according to use counts, where the buckets are data structures
supporting the method. The in-use buckets include a low
in-use bucket for a lowest range of use counts, and a high
in-use bucket for a highest range of use counts. The method
comprises assigning free pages to free buckets according to
use counts. The free buckets include a low free bucket for a
lowest range of use counts, and a high free bucket for a highest
range of use counts. The method maintains use counts for
in-use pages. On a triggering event for a particular page that
is in use, the method determines whether the use count of the
particular page exceeds a hot swap threshold, and if so moves
data in the particular page to a target page in the low free
bucket, changes the status of the particular page from in-use
to free, changes the status of the target page from free to
in-use, and adds that now in-use target page to an in-use
bucket. The particular page is also added to a free bucket.
Other wear leveling processes can be executed as well, using
the bucket structure. A system implementing the wear level-
ing processes is also described.

Other aspects and advantages of the present invention can
be seen on review of the drawings, the detailed description
and the claims, which follow.

10

15

20

25

30

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is a block diagram of an example memory manage-
ment system.

FIGS. 2A-2B illustrate modifications on entries in a page
table for address remapping incurred by wear leveling.

FIG. 3 illustrates an example data structure.

FIG. 4 illustrates dynamic wear leveling for swapping hot
pages.

FIG. 5 is a flow chart for dynamic wear leveling.

FIG. 6 illustrates static wear leveling for swapping cold
pages.

FIG. 7 is a flow chart for static wear leveling.

FIG. 8 is a block diagram of an example computer system

DETAILED DESCRIPTION

A detailed description of embodiments of the wear leveling
technology is provided with reference to the FIGS. 1-8.

FIG. 1is a block diagram of an example memory manage-
ment system 100 using a method for memory management
for a memory including a plurality of pages. The system
interfaces with user processes such as App 1, App 2, and App
n. The system performs program execution and memory allo-
cation according to the user processes. The system includes
an operating system 120 (OS), a memory management unit
130 (MMU), and memory 140. The operating system 120
includes OS-level paging 122, and lifetime aware manage-
ment 124, and communicates with the memory management
unit 130. The memory management unit 130 includes an
address translation unit 132, a translation lookaside buffer
134 (TLB), and a use count cache 136, and communicates
with the memory 140. The memory 140 may include a plu-
rality of pages including pages based on phase change
memory (PCM), a page table 142 and counters 144. The
lifetime aware management 124 comprises logic to direct
wear leveling processes in cooperation with the logical
addressing or virtual addressing scheme employed by the OS.
The lifetime aware management 124 can be implemented as
a feature of the OS, or as an add-on memory driver program,
for example.

In this example, the OS maintains a translation lookaside
buffer 134 (TLB) for addressing pages in the memory, and in
cooperation with the lifetime aware management 124, main-
tains the use count cache 136 that includes entries for pages
resident in the TLB. In other embodiments, the use count
cache 136 can be independent of the TLB logic.

The translation lookaside buffer 134 can be a small and fast
cache that speeds up address translation time by caching the
page and frame numbers, for example, of the most recently
used pages. Thus, it provides an efficient way to identify
in-use pages in support of wear leveling processes.

Counters 144 calculate use counts of physical pages in the
memory. The use counts for the physical pages may be write
counts or erase counts. A physical page with a use count lower
than that of another physical page is called “younger” than the
other physical page for the purpose of this description. Con-
versely, the other physical page is called “older” than a physi-
cal page having a lower use count.

The use count cache 136 records the use counts produced
by the counters 144 for pages having entries in the use count
cache, which in this example include pages resident in the
TLB. The use counts for pages not resident in the use count
cache are maintained in this example by assigning them to
“buckets” which have corresponding use count ranges asso-
ciated with them. When pages are moved into and out of the

US 9,251,056 B2

3

use count cache 136, an initial use count can be approximated
for the page, based on the range associated with its bucket.

The use count cache 136 can be used to avoid frequent
counter updates on every page in nonvolatile memory such as
PCM-based memory. The use count cache 136 may be in the
memory management unit 130. The lifetime aware manage-
ment 124 decides how to allocate and swap pages in the
memory to enhance the memory endurance. Using the OS-
level paging 122 in the operating system 120, address remap-
ping incurred by page allocation and swapping can be per-
formed by modifying corresponding entries in the page table
142. Using the lifetime aware management 124, a young page
can be acquired when page allocation or page swapping needs
to be performed without searching or sorting pages in the
memory 140. A young page thus acquired may be a physical
page from among physical pages within a lowest range of use
counts.

FIGS. 2A-2B illustrate modifications on entries in a page
table for address remapping incurred by wear leveling. The
Figures illustrate a list of logical page addresses 244, a list of
entries in a page table 242, and a list of physical page
addresses 245. A page table 242, such as the page table 142
shown in FIG. 1, may be a data structure used by the operating
system 120 to store the mapping between logical page
addresses and physical page addresses. The translation looka-
side buffer 134 stores a cache of recently used mappings from
the page table 142. When a logical page address needs to be
translated into a physical page address, the operating system
120 first searches the translation lookaside buffer 134. If a
match is found, the translation lookaside buffer 134 returns
the physical page address, and the operating system 120 may
continue with memory access. If a match is not found, the
operating system 120 may look up the address mapping in the
page table 142. If the page table 142 returns the physical page
address, the operating system 120 may write the physical
page address to the translation lookaside buffer 134 to track
recently used mappings, and then continue with memory
access.

As illustrated in FIGS. 2A and 2B, the list of logical page
addresses 244 ranges from 0 to L-1 where L is the total
number of logical page addresses in the system. The list of
physical page addresses 245 ranges from 0 to P-1 where P is
the total number of physical page addresses in the system. The
page table 242 has entries ranging from 0 to T-1 where T is
the total number of entries in the page table.

In reference to FIG. 2A, entries T-2, 3, and 4 in the page
table 242 map logical page addresses 0, 2, and [.-1 to physical
page addresses 2, 1, and P-2, respectively. Thus, the page at
logical page address 2 is mapped to physical address 1, and is
an in-use page. An in-use page is a page having data, while a
free page is a page not having any data, having invalid data or
having erased data. The page at physical address P-1is a free
page.

The wear leveling procedure as mentioned above can be
executed in coordination with the logical addressing. Thus, if
it is determined that the use count of the current in-use page at
physical address 1 exceeds a hot swap threshold, the data at
physical address 1 can be moved to the free page at physical
page address P-1. The hot swap threshold is further described
in connection with FIG. 4. FIG. 2B illustrates the result of
moving data from physical page address 1 to physical address
P-1, while not changing the corresponding logical page
address. InFIG. 2A, entry 3 in the page table 242 maps logical
address 2 (arrow 250) to physical page 1 (arrow 251). After
swapping as shown in FIG. 2B, entry 3 in the page table 242
maps logical address 2 (arrow 250) to physical page 1 (arrow
252). The physical page at physical address P-1 now has the

10

15

20

25

30

35

40

45

50

55

60

65

4

data moved from the physical page at physical address 1,
while the physical page at physical address 1 is now freed.
Consequently, in-use pages with use counts exceeding the hot
swap threshold can be swapped with free pages which have
lower use counts, improving write/erase endurance of the
nonvolatile memory.

FIGS. 3-5 illustrate a method for memory management for
amemory including a plurality of pages. The method includes
assigning in-use pages to in-use buckets according to use
counts, assigning free pages to free buckets according to use
counts, and maintaining use counts for in-use pages. The
method includes dynamic wear leveling for swapping hot
pages, and static wear leveling for swapping cold pages.

FIG. 3 illustrates an example data structure underlying the
method for memory management. Pages in the plurality of
pages are categorized as in-use pages or free pages and
assigned to in-use or free “buckets” to classify pages accord-
ing to their use counts, and to identify younger and older
pages. In-use pages are maintained in in-use buckets. Free
pages are maintained in free buckets. The in-use buckets can
be implemented using linked lists of pages including lead
pages and last pages. The free buckets can be implemented
using linked lists of pages including lead pages and last pages.
The data structure includes an in-use list of buckets to manage
in-use pages, and a free list of buckets to manage free pages.
The in-use list of buckets and the free list of buckets can
include the same number of buckets or a different number of
buckets as suits a particular implementation. In this example,
the in-use list maintains a list of a number N buckets of in-use
pages. The free list maintains a list of N buckets of free pages.
Each bucket on one list corresponds to a bucket on the other
list. Buckets that maintain the current youngest free pages and
in-use pages are referred to as the free base bucket or low free
bucket, and the in-use base bucket or low in-use bucket,
respectively.

As illustrated in FIG. 3, the data structure includes an
in-use list 320 and a free list 310. The in-use list 320 links
in-use buckets, such as in-use buckets 321,322, .. .,328, and
329, into which in-use pages may be assigned according to
use counts. The use counts may be erase counts or write
counts of each page. Pages in the same in-use bucket have use
counts falling in the range of use counts assigned to that
bucket. Each in-use bucket may be assigned multiple in-use
pages, and the in-use pages inside an in-use bucket may be
linked together starting with a lead page and ending with a last
page. For instance, the in-use bucket 329 is assigned in-use
pages from a lead in-use page 3294 through a last in-use page
329z. The in-use pages inside the in-use bucket 329 are linked
together, starting with the lead in-use page 329« and ending
with the last in-use page 329z. The in-use buckets may
include a low in-use bucket, such as the in-use bucket 321, for
alowest range of use counts, and a high in-use bucket, such as
the in-use bucket 329, for a highest range of use counts. The
in-use list 320 maintains the in-use buckets in order of ranges
of use counts, increasing from the low in-use bucket to the
high in-use bucket. For instance, the low in-use bucket 321
may have a range of use counts of 0-1000, the high in-use
bucket may have a range of use counts 0£ 9001-10000, and the
in-use buckets in-between them may have ranges of use
counts 1001-2000, 2001-3000, 3001-4000, etc. Older pages
are pages with higher use counts, and are assigned to in-use
buckets farther away from the low in-use bucket, and closer to
or in the high in-use bucket. An in-use bucket may be empty,
such as the in-use bucket 328. The in-use list 320 is linked in
a circular format such that the high in-use bucket is linked
back to the low in-use bucket. The low in-use bucket may
become empty eventually, because pages in the low in-use

US 9,251,056 B2

5

bucket are gradually moved to other buckets. When the low
in-use bucket, such as the in-use bucket 321, runs out of
pages, the in-use list 320 may rotate such that the in-use
bucket 322 becomes the low in-use bucket, while the in-use
bucket 321 becomes the high in-use bucket, changing the
range of use counts associated with the buckets as needed.

The free list 310 links free buckets, such as 311, 312, . . .,
318, and 319, into which free pages may be assigned accord-
ing to use counts. As described herein, the use counts may be
erase counts or write counts of each page. Pages in the same
free bucket have the same range or use counts. Each free
bucket may be assigned multiple free pages, and the free
pages inside a free bucket may be linked together starting
with a lead page and ending with a last page. For instance, the
free bucket 319 is assigned a lead free page 3194, a last free
page 3195, etc. The free pages inside the free bucket 319 are
linked together, starting with the lead free page 3194 and
ending with the last free page 31954. The free buckets may
include a low free bucket, such as the free bucket 311, for a
lowest range of use counts, and a high free bucket, such as the
free bucket 319, for a highest range of use counts. Older pages
are assigned to free buckets farther away from the low free
bucket, and closer to or in the high free bucket. A free bucket
may be empty, such as the free bucket 312. The free list 310 is
linked in a circular format such that the high free bucket 319
is linked back to the low free bucket 311. The low free bucket
may become empty eventually, because pages in the low free
bucket are gradually moved to other buckets. When the low
free bucket, such as the free bucket 311, runs out of pages, the
free list 310 may rotate such that the free bucket 312 becomes
the low free bucket, while the free bucket 311 becomes the
high free bucket.

In operation, the method assigns in-use pages to in-use
buckets, such as in-use buckets 321-329, according to use
counts. The in-use buckets include a low in-use bucket, such
as in-use bucket 321, for a lowest range of use counts, and a
high in-use bucket for a highest range of use counts, such as
in-use buckets 329. The method assigns free pages to free
buckets, such as free buckets 311-319, according to use
counts. The free buckets include a low free bucket, such as
free bucket 311, for a lowest range of use counts, and a high
free bucket, such as free bucket 319, for a highest range of use
counts.

The method maintains use counts for in-use pages. The
method can maintain the use counts using the use count cache
136 shown in FIG. 1. The use count in an entry for a page may
be incremented on an erase of data or a write of data in the
page. The entry for a page may be in the use count cache 136.
For instance, the use count in the entry for the last in-use page
329z is incremented on an erase of data in the last in-use page
329z. The use count in an entry for a page may also be
incremented on a write of data in the page.

FIG. 4 illustrates dynamic wear leveling for swapping hot
pages. In this example, the last in-use page 329z can have a
high use count, and therefore be considered a hot page. Upon
a triggering event, such as being subject of a read or write
access, this high use count can be detected. Swapping hot
pages includes moving data in hot pages maintained by the
in-use list 320 to younger pages maintained by the free list
310. Ifthe last in-use page 329z satisfies a hot swap condition,
such as a threshold relative use count, then the wear leveling
algorithm can swap the data in the last in-use page 329z to a
lead free page 311a in a low free bucket 311. In this way, the
hot data is moved to a page having a lower use count.

FIG. 5 is a flow chart for dynamic wear leveling. In refer-
ence to FIG. 4 and FIG. 5, on a triggering event for a current
in-use page (510), the method determines whether the use

20

30

40

45

55

6

count of the last in-use page 329z exceeds a threshold, such as
a hot swap threshold (520), and if so the method moves data
in the last in-use page 329z to a page, such as a lead free page
311a, in the low free bucket 311, thus freeing the last in-use
page 329z (530). The method then performs updates on the
data moved to the low free bucket 311 (540), increments the
use count on the lead free page 311a in the low free bucket 311
(550), and assigns the freed page to a free bucket 319 for a
range of use counts corresponding to the in-use bucket 329
(560). The method maintains a use count cache 136 (FIG. 1),
which has entries for in-use pages including use counts. The
triggering event for the current in-use page can create an entry
for the current in-use page in the use count cache. The hot
swap threshold may be determined experimentally, assigned,
and adjusted by the system using the memory in accordance
with system requirements for factors such as relative use
counts of the pages in the memory, the number of buckets, the
granularity of wear leveling, and the complexity of the wear
leveling method.

FIG. 6 illustrates static wear leveling for swapping cold
pages. Cold pages are pages that are infrequently updated in
a nonvolatile memory, and thus are likely to cause poor page
utilization by occupying fresh pages in the in-use list. Data in
a cold page may be referred to as cold data. In this example,
in-use page 321q in the low in-use bucket can have a low use
count, and therefore be considered a cold page. Upon a trig-
gering event, such as being subject of a read or write access,
this low use count can be detected. Swapping cold pages
includes moving data in cold pages maintained by the in-use
list 320 to older pages maintained by the freelist 310. If in-use
page 321a satisfies a cold swap condition, such as a threshold
relative use count, then the wear leveling algorithm can swap
the data in in-use page 321a to a last free page 319¢ in a high
free bucket 319. In this way, the cold data is moved from a
page having a lower use count, freeing that low use count page
for use by other, more active logical pages.

FIG. 7 is a flow chart for static wear leveling. In reference
to FIG. 6 and FIG. 7, on a triggering event for a current in-use
page 321a (710), the method determines whether the use
count of the current in-use page 321a is less than a second
threshold, such as a cold swap threshold (720), and if so the
method moves data in the current in-use page 3214 to a page,
such as alast free page 319¢, inthe high free bucket 319 (730),
thus making in-use page 321a available to data that need to be
updated more frequently. The method increments the use
count on the last free page 319¢ in the high free bucket 319
(740), and assigns the last free page 319¢ in the high free
bucket 319 to the high in-use bucket 329 for a range of use
counts corresponding to the high free bucket 319 (750).

The method maintains a use count cache 136 (FIG. 1),
which has entries for in-use pages including use counts. The
triggering event for the current in-use page can be creating or
removing an entry for the current in-use page from the use
count cache. The cold swap threshold may be determined
experimentally, assigned, and adjusted by the system using
the memory in accordance with system requirements for fac-
tors such as the relative use counts among the pages, the
number of buckets, the granularity of wear leveling, and the
complexity of the wear leveling method.

As described herein, the method maintains a use count
cache 136 (FIG. 1), which has entries for in-use pages includ-
ing use counts. To provide the operating system 120 (FIG. 1)
with information including the most recently written in-use
pages to perform wear leveling, entries for physical pages
may need to be removed from the use count cache 136, or to
be created in the use count cache 136. When an entry for a
page is removed from the use count cache 136, the method

US 9,251,056 B2

7

assigns it to an in-use bucket based on the use count in the
entry. Forinstance, if the use count in an entry for a page in the
use count cache 136 is 3500, the method assigns the page to an
in-use bucket that maintains in-use pages with use counts in a
range from 3001 to 4000. When an entry for a page is created
in the use count cache 136, the method assigns it a use count
based on its in-use bucket. For instance, when an entry for a
page is created in the use count cache 136, where the page is
from an in-use bucket maintaining in-use pages with use
counts in a range from 3001 to 4000, the method assigns it a
use count based on its in-use bucket, such as 3500, or another
use count between 3001 and 4000, inclusively.

In one embodiment, two algorithms manage memory
pages based on the bucket-based data structures. Algorithm 1
may use the static wear leveling described herein to allocate a
young page when a free page is needed. Algorithm 2 may use
the dynamic wear leveling and the static wear leveling
described herein to prevent old pages from being worn out by
frequent updates. Pseudocode for Algorithm 1 and Algorithm
2 is reproduced below:

Algorithm 1

1: if F[b] = O then
2: p < the last page in F[b]
move p to the head of I[b]

3

4

5: p < the last page in I[b]
6: q < the last page in F[h]
7

8

9

1

copy the data of p to q

clq] < clq] +1

move q to the head of I[h]

0: return p
Algorithm 2

1:ifs _= (b +N- 1) mod N then
2 perform update on q
3 clg] < clq]+1
4 ifc[q] = R then
5: move q to the head of I[s + 1]
6 clal<0
7: else
8 if 0 <¢[q] <R/2 then
9: perform update on q
10: clq] < c[q] +1
11: else
12: p < invoke free page allocation
13: copy the data of q to p
14: perform update on p
15: move q to the head of F[s]
16: clp] < c[p]+1
17: if ¢[p] = R then
18: move p to the head of I[b + 1]
19: clp] < 0

In Algorithm 1, F[] represents the free list 310, and][|
represents the in-use list 320. b indicates the bucket index for
the low free bucket and the low in-use bucket, and h indicates
the bucket index for the high free bucket and the high in-use
bucket. Accordingly, F[b] represents the low free bucket, and
1[b] represents the low in-use bucket. p is a pointer to a free
page to be returned by Algorithm 1. In Algorithm 2, q is a
current in-use page to be updated. p is a pointer to a free page
to be returned by Algorithm 1. b indicates the bucket index for
the low in-use bucket, and s indicates the bucket index for
page q. N is the number of buckets. R is a hot swap threshold.
c[q] tracks the use count for the page q. “(b+N-1)mod N is
the index to the high in-use bucket.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

When a free page is needed, it is allocated from either the
low free bucket or the low in-use bucket. If the low free bucket
is not empty, the algorithm moves the last page in the low free
bucket F[b] to the head of the low in-use bucket I[b] (lines
1-3). Algorithm 1 then returns the last page in the low free
bucket F[b] as a free page (line 10).

If the low free bucket is empty, Algorithm 2 moves data in
the last page in the low in-use bucket I[b] to a last page in the
high free bucket F[h], increments the use count on the last
page in the high free bucket F[h], and assigns the last page in
the high free bucket F[h] to the high in-use bucket I[h] for a
range of use counts corresponding to the high free bucket F[h]
(lines 5-9). Algorithm 1 then returns the last page in the low
in-use bucket I[b] as a free page (line 10). Accordingly Algo-
rithm 1 allocates a free page either from the low free bucket
F[b] (lines 1-3), or from the low in-use bucket I[b] using static
wear leveling by moving cold data to old pages (lines 5-9),
and returns the free page p in the low in-use bucket I[b].

When a current in-use page q needs to be updated, Algo-
rithm 2 may update the current in-use page q directly, or first
swap the current in-use page q with a free page p, depending
on whether the use count of the current in-use page q exceeds
the hot swap threshold R.

If the bucket index s for the in-use page q is not equal to the
bucket index “(b+N-1)mod N> for the high in-use bucket
(line 1), Algorithm 2 updates the in-use page q directly (line
2), and increments by 1 the use count of the current in-use
page q (line 3). After incrementing, if the use count of the
current in-use page q equals or exceeds the hot swap threshold
R (line 4), Algorithm 2 moves the in-use page q from the
current bucket to the head of the next bucket I[s+1] with a
higher range of use counts, and resets the use count to 0 to
indicate that the data in the page at the head of the next bucket
1[s+1] is moved there from a bucket with a lower range of use
counts due to intensive updates (lines 4-6).

If the bucket index s for the in-use page q is equal to the
bucket index “(b+N-1) mod N” for the high in-use bucket
(line 1), the in-use page q is in the high in-use bucket and may
have a use count exceeding the hot swap threshold. Algorithm
2 then tests if the use count ¢[q] of the current in-use page q is
in a range of greater than 0 and less than half of the hot swap
threshold (0<c[q]<R/2). If the use count c[q] is in the range,
Algorithm 2 updates the in-use page q directly (line 9), and
increments by 1 the use count of the current in-use page q
(line 10).

Ifthe use count c[q] of the current in-use page q in the high
in-use bucket is O, it implies that the current in-use page has
been moved there from an in-use page with a use count
exceeding the hot swap threshold R in a bucket with a lower
range of use counts, in accordance with lines 4-6 of Algorithm
2 where the use count c[q] of the current in-use page q is reset
to 0. If the use count c[q] of the current in-use page q in the
high in-use bucket is equal to or greater than R/2, then the use
count may exceed the hot swap threshold R. Accordingly, if
the use count c[q] of the current in-use page q in the high
in-use bucket is outside the range of (0<c[q]<R/2) (line 11),
Algorithm 2 first allocates a free page p using Algorithm 1
which employs the static wear leveling (line 12). In accor-
dance with Algorithm 1, the free page p is in the low in-use
bucket I[b]. Algorithm 2 then employs the dynamic wear
leveling (lines 13-16). In particular, Algorithm 2 moves data
in the current in-use page q to the free page p (line 13), and
performs update on the data moved to the page p (line 14).
Algorithm 2 then frees the current in-use page q, and assigns
the freed page q to the head of the high free bucket F[s] for a
range of use counts corresponding to the high in-use bucket
1[s] (line 15).

US 9,251,056 B2

9

Algorithm 2 increments the use count by 1 on the page p
(line 16). After incrementing, if the use count of the current
in-use page p equals or exceeds the hot swap threshold R (line
17), Algorithm 2 moves the in-use page p from the current
in-use bucket I[b] to the head of the next in-use bucket I[b+1]
with a higher range of use counts, and resets the use count to
0 to indicate that the data in the page at the head of the bucket
I[b+1] is moved there from a bucket with a lower range of use
counts due to intensive updates (lines 17-19).

FIG. 8 is a block diagram of an example computer system
810, according to one implementation. Computer system 810
may include a storage subsystem 824 including a memory
828 including a plurality of pages, and a memory controller
814 coupled to at least the memory 828.

The memory 828 may be under bucket-based dynamic and
static wear leveling memory management. The memory 828
may store bucket-based data structures for bucket-based wear
leveling including the in-use buckets and the free buckets, the
use counts for the in-use pages in the in-use buckets, and a
page table, such as the page table 142 described with FIG. 1.

The memory 828 may include phase change memory mate-
rials, like chalcogenides, and other programmable resistance
materials. Phase change memory materials may include
alloys of materials such as germanium (Ge), antimony (Sb),
tellurium (Te), gallium (Ga), indium (In), silver (Ag), sele-
nium (Se), thallium (Ti), bismuth (Bi), tin (Sn), copper (Cu),
palladium (Pd), lead (Pb), sulfur (S), and gold (Au). Phase
change materials include Ge Sb, Te, materials in general.
Other programmable resistance memory can be used as well,
including metal oxide memory, flash memory, electrolytic
conductive bridge memory, and so on.

The memory controller 814 includes programs or other
logic to perform memory management using bucket-based
dynamic wear leveling and static wear leveling. In particular,
the memory controller 814 includes logic to assign in-use
pages to in-use buckets according to use counts. The in-use
buckets include a low in-use bucket for a lowest range of use
counts, and a high in-use bucket for a highest range of use
counts. The memory controller 814 includes logic to assign
free pages to free buckets according to use counts. The free
buckets include a low free bucket for a lowest range of use
counts, and a high free bucket for a highest range of use
counts. The memory controller 814 includes logic to maintain
use counts for in-use pages. For dynamic wear leveling, the
memory controller 814 includes logic to, on a triggering event
for a current in-use page, determine whether the use count of
the current in-use page exceeds a hot swap threshold, and if so
move data in the current in-use page to a page, such as a lead
page, in the low free bucket, and free the current in-use page.
For static wear leveling, the memory controller 814 includes
logic to, on a triggering event for a current in-use page,
determine whether the use count of the current in-use page is
less than a cold swap threshold, and if so move data in the
current in-use page to a page, such as a last page, in the low
free bucket.

The memory controller 814 may include a memory man-
agement unit 130, and the lifetime aware management 124
(FIG. 1). The example computer system 810 and/or the
memory controller 814 may include logic to perform other
tasks as set forth in the description for the method for memory
management for a memory including a plurality of pages.

The memory 828 under bucket-based dynamic and static
wear leveling management may be on an integrated circuit,
wherein the memory controller 814 includes logic on the
integrated circuit. Computer system 810 may include a data
processor 816, wherein the memory controller 814 includes
logic on the data processor 816. For example, the logic may

10

15

20

25

30

35

40

45

50

55

60

65

10
include algorithms such as Algorithm 1 and Algorithm 2
described herein using the dynamic wear leveling and static
wear leveling to prevent old pages from being worn out by
frequent updates.

The data processor 816 communicates with a number of
peripheral devices via bus subsystem 812. These peripheral
devices may include the storage subsystem 824 including, for
example, memory devices such as ROM and RAM, and the
memory 828 with wear leveling, user interface input devices
822, user interface output devices 820, and a network inter-
face subsystem 818. The input and output devices allow user
interaction with computer system 810. Network interface
subsystem 818 provides an interface to outside networks.

User interface input devices 822 may include a keyboard;
pointing devices such as a mouse, trackball, touchpad, or
graphics tablet; a scanner; a touchscreen incorporated into the
display; audio input devices such as voice recognition sys-
tems and microphones; and other types of input devices. In
general, use of the term “input device” is intended to include
all possible types of devices and ways to input information
into computer system 810.

User interface output devices 820 may include a display
subsystem, a printer, a fax machine, or non-visual displays
such as audio output devices. The display subsystem may
include a cathode ray tube (CRT), a flat-panel device such as
a liquid crystal display (LCD), a projection device, or some
other mechanism for creating a visible image. The display
subsystem may also provide a non-visual display such as via
audio output devices. In general, use of the term “output
device” is intended to include all possible types of devices and
ways to output information from computer system 810 to the
user or to another machine or computer system.

Storage subsystem 824 stores programming and data con-
structs that provide the functionality of some or all of the
modules and methods described herein. These software mod-
ules are generally executed by data processor 816 alone or in
combination with other processors.

Memory subsystem 826 used in the storage subsystem 824
can include a number of memories including a main random
access memory (RAM) 830 for storage of instructions and
data during program execution and a read only memory
(ROM) 832 in which fixed instructions are stored. The storage
subsystem 824 can provide persistent storage for program
and data files, and may include a hard disk drive, a floppy disk
drive along with associated removable media, a CD-ROM
drive, an optical drive, or removable media cartridges. The
modules implementing the functionality of certain imple-
mentations may be stored in the storage subsystem 824, or in
other machines accessible by the processor.

Bus subsystem 812 provides a mechanism for letting the
various components and subsystems of computer system 810
communicate with each other as intended. Although bus sub-
system 812 is shown schematically as a single bus, alternative
implementations of the bus subsystem may use multiple bus-
ses.

Computer system 810 can be of varying types including a
workstation, server, computing cluster, blade server, server
farm, or any other data processing system or computing
device. Due to the ever-changing nature of computers and
networks, the description of computer system 810 depicted in
FIG. 8 is intended only as one example. Many other configu-
rations of computer system 810 are possible having more or
fewer components than the computer system depicted in FIG.
8.

The present application provides a method for memory
management for amemory including a plurality of pages. The
method includes assigning in-use pages to in-use buckets

US 9,251,056 B2

11

according to use counts, including a low in-use bucket for a
lowest range of use counts, and a high in-use bucket for a
highest range of use counts. The method includes assigning
free pages to free buckets according to use counts, the free
buckets including a low free bucket for a lowest range of use
counts, and a high free bucket for a highest range of use
counts. The method includes maintaining use counts for in-
use pages. The method includes, on a triggering event for a
current in-use page, determining whether the use count of a
current in-use page in an in-use bucket exceeds a threshold,
and if so moving data in the current in-use page to a page in
the low free bucket.

These and additional implementations can include one or
more of the following features. The low free bucket may
include a list of free pages, and the page in the low free bucket
may be a lead page in the list. The method may further include
freeing the current in-use page, and assigning the freed cur-
rent in-use page to a free bucket for a range of use counts
corresponding to the in-use bucket. The method may main-
tain a use count cache, having entries for in-use pages includ-
ing use counts, and wherein the triggering event for the cur-
rent in-use page is removing an entry for the current in-use
page from the use count cache.

The method may further include, on a triggering event for
a current in-use page, determining whether the use count of
the current in-use page is less than a second threshold, and if
so moving data in the current in-use page to a page in the high
free bucket. The high free bucket may include a list of free
pages, and the page in the high free bucket may be a last page
in the list. The method may include assigning the page in the
high free bucket to an in-use bucket for a range of use counts
corresponding to the high free bucket. The method may
include maintaining a use count cache, having entries for
in-use pages including use counts, and wherein the triggering
event for the current in-use page is removing an entry for the
current in-use page from the use count cache.

The method may include maintaining a use count cache,
having entries for in-use pages including use counts, when an
entry for a page is removed from the use count cache, assign-
ing it to an in-use bucket based on the use count in the entry,
and when an entry for a page is created in the use count cache,
assigning it a use count based on its in-use bucket.

The in-use buckets and the free buckets may include
respective linked lists of pages including lead pages. The
method may include maintaining a translation lookaside
buffer TLB for addressing pages in the memory, and main-
taining a use count cache including entries for pages resident
in the TLB.

The method may include assigning the freed page to a free
bucket for a range of use counts corresponding to the in-use
bucket. Maintaining use counts for in-use pages may include
incrementing the use count in an entry for a page on an erase
of data in the page.

The present application provides an apparatus including a
memory including a plurality of pages, and a memory con-
troller coupled to the memory. The memory controller
includes logic to assign in-use pages to in-use buckets accord-
ing to use counts, including a low in-use bucket for a lowest
range of use counts, and a high in-use bucket for a highest
range of use counts; logic to assign free pages to free buckets
according to use counts, the free buckets including a low free
bucket for a lowest range of use counts, and a high free bucket
for a highest range of use counts; logic to maintain use counts
for in-use pages; and logic which determines whether the use
count of a current in-use page in an in-use bucket exceeds a
threshold, and if so moves data in the current in-use page to a
page in the low free bucket.

10

15

20

25

30

35

40

45

50

55

60

65

12

These and additional implementations can include one or
more of the following features. The low free bucket may
include a list of free pages, and the page in the low free bucket
may be a lead page in the list. The memory controller may
include logic to free the current in-use page, and to assign the
freed current in-use page to a free bucket for a range of use
counts corresponding to the in-use bucket. The memory con-
troller may include a use count cache, having entries for
in-use pages including use counts, and wherein the triggering
event for the current in-use page is removing an entry for the
current in-use page from the use count cache.

The memory controller may further include logic, which
on a triggering event for a current in-use page, determines
whether the use count of the current page is less than a second
threshold, and if so moves data in the current in-use page to a
page inthe high free bucket. The high free bucket may include
alist of free pages, and the page in the high free bucket is a last
page in the list. The memory controller may include logic
which assigns the page in the high free bucket to an in-use
bucket for arange of'use counts corresponding to the high free
bucket. The memory controller may include a use count
cache, having entries for in-use pages including use counts,
and wherein the triggering event for the current in-use page is
removing an entry for the current in-use page from the use
count cache.

The memory controller may include a use count cache,
having entries for in-use pages including use counts, includ-
ing logic which, when an entry for a page is removed from the
use count cache, assigns itto an in-use bucket based on the use
count in the entry, and including logic which, when an entry
for a page is created in the use count cache, assigns it a use
count based on its in-use bucket.

In the apparatus, the in-use buckets and the free buckets
may include respective linked lists of pages including lead
pages. The apparatus may include a translation lookaside
buffer TLB for addressing pages in the memory, and a use
count cache including entries for pages resident in the TLB.
The apparatus may include logic which assigns the freed page
to a free bucket for a range of use counts corresponding to the
in-use bucket. The apparatus may include logic which incre-
ments the use count in an entry for a page on an erase of data
in the page.

The memory in the apparatus may be on an integrated
circuit, and the memory controller may include logic on the
integrated circuit. The apparatus may further include a data
processor, wherein the memory controller includes logic on
the data processor. The apparatus may further include a page
table, wherein the memory may store the in-use buckets, the
free buckets, the use counts for the in-use pages in the in-use
buckets, and the page table. The memory may include phase
change memory materials.

While the present invention is disclosed by reference to the
preferred embodiments and examples detailed above, it is to
be understood that these examples are intended in an illustra-
tive rather than in a limiting sense. It is contemplated that
modifications and combinations will readily occur to those
skilled in the art, which modifications and combinations will
be within the spirit of the invention and the scope of the
following claims.

What is claimed is:

1. A method for memory management for a memory
including a plurality of pages, wherein each page in the plu-
rality has a use count, comprising:

assigning in-use pages to in-use buckets according to use

counts, including a low in-use bucket for a lowest range
of use counts, and a high in-use bucket for a highest
range of use counts;

US 9,251,056 B2

13

assigning free pages to free buckets according to use counts
the free pages, the free buckets including a low free
bucket for a lowest range of the use counts of the free
pages, and a high free bucket for a highest range of the
use counts of the free pages;

maintaining use counts for in-use pages in a use count

cache having entries for in-use pages including use
counts; and

determining whether the use count of a current in-use page

in an in-use bucket exceeds a threshold, and if so moving
data in the current in-use page to a page in the low free
bucket.

2. The method of claim 1, including freeing the current
in-use page, and assigning the freed current in-use page to a
free bucket for a range of use counts corresponding to the
in-use bucket.

3. The method of claim 1, wherein said determining is
performed in response to a triggering event that relates to an
operation on the current in-use page.

4. The method of claim 3, wherein said triggering event for
the current in-use page is removing an entry for the current
in-use page from the use count cache.

5. The method of claim 1, including determining whether
the use count of the current in-use page is less than a second
threshold, and if so moving data in the current in-use page to
a page in the high free bucket.

6. The method of claim 5, including assigning the page in
the high free bucket to an in-use bucket for a range of use
counts corresponding to the high free bucket.

7. The method of claim 5, wherein said determining
whether the use count of the current in-use page is less than a
second threshold is performed in response to a triggering
event that relates to an operation on the current in-use page.

8. The method of claim 7, wherein said triggering event for
the current in-use page is removing an entry for the current
in-use page from the use count cache.

9. The method of claim 1, when an entry for a page is
removed from the use count cache assigning it to an in-use
bucket based on the use count in said entry, and when an entry
for a page is created in the use count cache, assigning it a use
count based on its in-use bucket.

10. An apparatus, comprising:

a memory including a plurality of pages, wherein each

page in the plurality has a use count; and

a memory controller coupled to the memory, including

logic to assign in-use pages to in-use buckets according
to use counts, including a low in-use bucket for a lowest
range of use counts, and a high in-use bucket for a
highest range of use counts; logic to assign free pages to
free buckets according to use counts of the pages, the
free buckets including a low free bucket for a lowest

10

15

20

25

30

35

40

45

50

14

range of use of the free pages, and a high free bucket for
a highest range of the use counts of the free pages; logic
to maintain use counts for in-use pages in a use count
cache having entries for in-use pages including use
counts; and logic which determines whether the use
count of a current in-use page in an in-use bucket
exceeds a threshold, and if so moves data in the current
in-use page to a page in the low free bucket.

11. The apparatus of claim 10, wherein the memory con-
troller includes logic to free the current in-use page, and to
assign the freed current in-use page to a free bucket for arange
of'use counts corresponding to the in-use bucket.

12. The apparatus of claim 10, wherein said logic which
determines whether the use count of a current in-use page in
an in-use bucket exceeds a threshold executes in response to
a triggering event that relates to an operation on the current
in-use page.

13. The apparatus of claim 12, wherein said triggering
event for the current in-use page is removing an entry for the
current in-use page from the use count cache.

14. The apparatus of claim 10, the memory controller
including logic which determines whether the use count of
the current page is less than a second threshold, and if so
moves data in the current in-use page to a page in the high free
bucket.

15. The apparatus of claim 14, the memory controller
including logic which assigns the page in the high free bucket
to an in-use bucket for a range of use counts corresponding to
the high free bucket.

16. The apparatus of claim 14, wherein said logic which
determines whether the use count of a current in-use page is
less than a second threshold executes in response to a trigger-
ing event that relates to an operation on the current in-use
page.

17. The apparatus of claim 16, wherein said triggering
event for the current in-use page is removing an entry for the
current in-use page from the use count cache.

18. The apparatus of claim 10, the memory controller
including logic which when an entry for a page is removed
from the use count cache assigns it to an in-use bucket based
on the use count in said entry, and which when an entry fora
page is created in the use count cache, assigns it a use count
based on its in-use bucket.

19. The apparatus of claim 10, wherein the memory is on an
integrated circuit, and the memory controller comprises logic
on the integrated circuit.

20. The apparatus of claim 10, wherein the memory com-
prises memory cells including phase change memory mate-
rials.

